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Abstract 
Construction problems have always been an important part in learning Geometry. Mastering 

construction helps students in logical reasoning. In this paper, we will take a look at traditional 

construction problems and create these constructions using GeoGebra. GeoGebra, as a software, has 

many functions. However, in this paper, we will only make use of functions that mimics the traditional 

compass and straightedge construction. 

We will start with simple construction such as constructing angles and triangles. We will discuss 

construction of angle bisectors. We also use construction in showing certain properties of geometric 

objects, such as triangles and circles. We look at properties of angle bisectors and side bisectors of 

triangles, as well as chords of a circle. Finally, we will build upon these basic construction 

techniques to eventually show and construct more complicated theorems. 

 

1. Introduction 
Geometric construction has always been a fascination to many mathematicians and educators. 

While restricting the tools to straight edge and compass is not practical for real life construction, 

studies show that the exercises help students think logically [12]. Furthermore, geometric 

construction reflects the axiomatic system of Euclidean geometry. There is a rich supply of 

construction problems that can be analyzed from various old and new sources. In analyzing why 

certain constructions work, the students will be able to visualize how certain properties and 

formulas work. 

In solving the various construction problems, we will make use of the software GeoGebra 

[11]. Many recent papers on Geometric construction, such as [2, 13], make use of dynamic 

geometry software. In particular, GeoGebra came out in 2002 as a free dynamic geometry software, 

with comparable functionalities as other proprietary software. Currently GeoGebra is at version 4.4, 

with version 5 at the beta release. 

Works such as [9, 10] have explored the effects of using GeoGebra in teaching various math 

lessons. Using dynamic geometry software has many advantages in classroom discussions. During 

lesson planning, teachers can already create the GeoGebra files to be used for class. With the 

prepared file, the teacher has extra time to create a more stimulating discussion in classes. 

Furthermore, the software is very handy as teachers react to student questions, comments and 

conjectures. 

At our college, most of the undergraduate math classes we teach make use of some software 

(both mathematical and otherwise) to aid in student learning. In our various syllabi, we explicitly 

state that exercises in software such as Microsoft Excel and MatLab are done during laboratory 

classes to learn certain topics. It is our opinion that these software may not be as effective for 

students who are using a visual learning technique, and for topics that need to be taught visually. 

Slowly, some members of our faculty began exploring other software, especially those that are more 

helpful visually. One of the software we started using is Geogebra. 

In this paper, we take a look at two complex construction problems: a Japanese sangaku 

problem involving four incircles inside an equilateral triangle, and the Archimedean shoemaker 
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problem. It is worthwhile to mention that the solution to the shoemaker problem makes use of two 

special cases of the solution to the classical Problem of Apollonius. 

 

2. An equilateral triangle with four congruent incircles 
This first problem is a Sangaku construction problem. Sangakus are wooden tablets inscribed with 

problems in Euclidean geometry offered by the Japanese at Shinto shrines or Buddhist temples 

during the Japanese isolation period (1603-1867). Sangaku problems are diverse (they are not just 

construction problems!) and provide a rich material both for teaching mathematics and research. 

Today, several references [4, 5, 6, 15, 16, 19] discuss Sangaku problems extensively. In particular, 

the theorem below is Problem 2.1.7 in [4]. 

This Sangaku construction problem is interesting because students will make use of 

constructing midpoints of a line segment, perpendicular line, angle bisector, and incircle of a 

triangle. This construction problem can be summarized in the following theorem: 

 

Theorem 2.1. Given an equilateral triangle of side 𝑎, a line through each vertex can be constructed 

so that the incircles of the four triangles formed are congruent. Furthermore, the incircles all have 

radii 
1

8
(√7 − √3)𝑎. 

 

The existence of the three suitable lines to form the congruent incircles can be shown 

through construction. Furthermore, when we use GeoGebra to construct, we can observe that 

changing the length of the side of the equilateral triangle will change the length of the radii by the 

multiplier 
1

8
(√7 − √3). The method to obtain the multiplier is difficult to explain using Geogebra, 

and needs a separate discussion in the classroom (as opposed to using the computer laboratory for 

the constructions). The proof to the radii of the incircles is elementary but lengthy; three detailed 

proofs can be found in [1]. 

To start the construction, students may be asked to begin by constructing an equilateral 

triangle. We start by constructing the line segment 𝐴𝐵. Next, we construct two circles: one whose 

center on 𝐴 and through 𝐵 while the other has center 𝐵 through 𝐴. The two circles will have two 

points of intersection. We pick one and use it as the third vertex of our equilateral triangle 𝐴𝐵𝐶 (see 

Figure 2.1.a). 

The next step is to construct the three lines mentioned in Theorem 2.1. Our construction will 

focus on the line passing through vertex 𝐴, and the construction of the other two lines will be 

similar. This line is essentially a radius of a circle centered at 𝐴 and passing through 𝐵 (cf. line 𝐴𝐿 

in Figure 3.1.b). In particular, this has to be the radius that intersects with a chord of the same 

circle; and this chord has to pass by the midpoint of 𝐵𝐶 and is perpendicular to 𝐴𝐵 (cf. line 𝐿𝐾 in 

Figure 3.1.b). 

To begin the construction, we need to construct the midpoint of side 𝐵𝐶. To do so, we 

construct the circles centered at 𝐵 passing through 𝐶 and centered at 𝐶 passing through 𝐵. The two 

circles will have two intersections 𝐸 and 𝐹. The intersection of line segment 𝐸𝐹 and side 𝐵𝐶 is the 

midpoint 𝐺 of 𝐵𝐶. 

Next, we construct the line perpendicular to 𝐴𝐵 passing through 𝐺. Select 𝐺 as the center of 

a circle passing through 𝐵. The intersection of this circle and the side 𝐴𝐵 is 𝐼. We then construct 

two circles: one centered at 𝐵 passing through 𝐼 and another centered at 𝐼 passing through 𝐵. The 

intersection of these two new circles are 𝐺 and 𝐾. We connect 𝐺 and 𝐾 to form the line 

perpendicular to 𝐴𝐵 passing through 𝐺. 

We then go back to the earlier circle centered at 𝐴 passing through 𝐵. We take the 

intersection of this earlier circle and the line 𝐺𝐾 to obtain point 𝐿. The line segment 𝐴𝐿 is the 

required line in Theorem 2.1 that passes through the vertex 𝐴 (see Figure 2.1.b). 
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By a similar process, we can construct suitable lines passing through vertices 𝐵 and 𝐶. 

Taking the intersection of these three lines and hiding the unnecessary circles and line segments, we 

form four triangles inside our original triangle 𝐴𝐵𝐶 (see Figure 2.2.a). 

The next step is to construct the incenters and incircles of the four interior triangles. We 

shall construct the incircle of triangle 𝐴𝑂𝐵 and the process for the other three triangles are the 

same. The incenter is simply the intersection of the three angle bisectors of the interior angles of the 

triangle. To obtain the intersection, however, we only need to construct at least two of the three 

angle bisectors. We start with vertex 𝐴. Construct a circle centered at 𝐴 passing through 𝑂. The 

intersection of this circle and the line segment 𝐴𝐵 is 𝑈. Construct two new circles, one centered at 

𝑂 passing through 𝑈 and another centered at 𝑈 passing through 𝑂. One of the intersections of the 

two new circles is 𝑊. Line segment 𝐴𝑊 bisects ∠𝑂𝐴𝐵 (see Figure 2.2.b). 

 

(b)(a)  
Figure 2.1: (a) An equilateral triangle; (b) Constructing the suitable line from 

Theorem 2.1 passing through vertex 𝐴 

 

(b)(a)
 

Figure 2.2: (a) The equilateral triangle with the three lines from Theorem 2.1; 

(b) Constructing the angle bisector of ∠𝑂𝐴𝐵 

 

We do a similar process for another angle, say ∠𝐴𝐵𝑂. The intersection of the two angle 

bisectors is the incenter 𝑋 of triangle 𝐴𝑂𝐵. Next, we construct a line segment passing through 𝑋 

and perpendicular to side 𝐴𝐵. The intersection of 𝐴𝐵 and the perpendicular line passing through 𝑋 

is 𝑌. Construct a circle centered at 𝑋 passing through 𝑌 and this is the incircle of triangle 𝐴𝑂𝐵. We 

repeat the process for triangles 𝐴𝑇𝐶, 𝐵𝑉𝐶, and 𝑇𝑂𝑉. 

Finally, we can use GeoGebra to check the measurements of the radii of the incircles as well 

as the measurement of side 𝐴𝐵, which is 𝑎. According to Theorem 2.1, when 𝑎 = 1, the radii of the 
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incircles have measurement 
1

8
(√7 − √3) ≈ 0.11 (see Figure 2.3.a). Also, when 𝑎 = 5, the radii of 

the incircles have measurement 
5

8
(√7 − √3) ≈ 0.57 (see Figure 2.3.b). The final GeoGebra file, 

Problem1.ggb, can be found in Section 6. 

 

(a) (b)  
Figure 2.3: (a) Checking Theorem 2.1 when 𝑎 = 1; (b) Checking Theorem 2.1 when 𝑎 = 5 

 

3. The Archimedean twin circles 
The second problem we will discuss is interesting because it is an ancient problem. It was discussed 

in T.L. Heath’s 1897 book The Works of Archimedes (Book of Lemmas, Proposition 5, p. 305 and 

Book of Lemmas, Proposition 6, p. 307 of [7]), as well as other references (p. 5 of [3], 𝛿, p. 181 and 

𝛿, p. 416 of [8], Soddy’s poem in [17], XI, p 325 of [18]). Consider the line segment 𝐴𝐵 with point 

𝑃 on 𝐴𝐵. Suppose there are three circles with diameters 𝐴𝐵, 𝐴𝑃, and 𝑃𝐵, where the radius of circle 

𝐴𝑃 is 𝑎 and the radius of circle 𝑃𝐵 is 𝑏. Let 𝑄 be the intersection of circle 𝐴𝐵 and the line 

perpendicular to 𝐴𝐵 passing through 𝑃 (cf. Figure 3.1). Then we have the following results due to 

Archimedes: 

 

Theorem 3.1. (a) We define the twin circles 𝐶1 and 𝐶2 as follows: 𝐶1 is tangent to 𝑃𝑄, circle 𝐴𝐵, 

and circle 𝐴𝑃 while 𝐶2 is tangent to 𝑃𝑄, circle 𝐴𝐵, and circle 𝑃𝐵. Then 𝐶1 and 𝐶2 have equal radii 

and is given by 

𝑡 =
𝑎𝑏

𝑎 + 𝑏
. 

(b) The circle 𝐶 tangent to circles 𝐴𝐵, 𝐴𝑃, and 𝑃𝐵 has radius 

𝑝 =
𝑎𝑏(𝑎 + 𝑏)

𝑎2 + 𝑎𝑏 + 𝑏2
. 

 

The theorem above is reminiscent of the classical problem of Apollonius, solved by Viète by 

construction in 1600 [18]. In the problem of Apollonius, we are asked to construct a circle that is 

tangent to three given circles. This problem led to several cases (in fact, 10 cases), depending on 

whether the given circles have zero, positive finite, or infinite radius. If a given circle has zero 

radius, then you are constructing a circle tangent to a point. If a given circle has infinite radius, then 

you are constructing a circle tangent to a line. 

In Theorem 3.1.a, we are trying to construct a circle 𝐶1 tangent to two circles and a line; or 

tangent to two circles with positive finite radius and a circle with infinite radius. The same is true in 

constructing 𝐶2. The formula for the radii of circles 𝐶1 and 𝐶2 is a direct consequence of Proposition 

5, p. 305 in [7]. In Theorem 3.1.b, we are trying to construct a circle 𝐶 tangent to three circles of 

positive finite radius. The formula for the radius of circle 𝐶 is a direct consequence of Proposition 6, 

p. 307 in [7]. 
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Just like in the previous section, let us construct the figures described in the theorem and use 

examples to check if the formulas are true. We start by constructing the line segment 𝐴𝐵 and 

picking a point 𝑃 in 𝐴𝐵. Since 𝐴𝐵, 𝐴𝑃, and 𝑃𝐵 are diameters, we need to construct the midpoints 

𝐶, 𝐷, and 𝐸 so we can construct the circles 𝐴𝐵, 𝐴𝑃, and 𝑃𝐵, respectively. By a similar method in 

the previous section, we also construct point 𝑄 by constructing the line perpendicular to 𝐴𝐵 passing 

through 𝑃 (see Figure 3.1). 

 

 
Figure 3.1: Constructing circles 𝐴𝐵, 𝐴𝑃, 𝑃𝐵 

 

The next step is to construct the twin circles 𝐶1 and 𝐶2. In this discussion, we construct 

circle 𝐶1, and 𝐶2 is constructed similarly. In the construction, we will see a small circle centered at 

𝑃 passing through a point 𝐻 (see Figure 3.2). Circles 𝐶1 and 𝐶2 are basically this circle moved (or 

translated) upwards and horizontally. So the key is to construct this small circle, obtain its radius, 

and construct 𝐶1 above it. 

To construct the small circle centered at 𝑃, we construct the line segment 𝐹𝐷, where 𝐹𝐷 is 

perpendicular to 𝐴𝐵 at 𝐷. Then we construct 𝐺𝐸, where 𝐺𝐸 is perpendicular to 𝐴𝐵 at 𝐸. Then we 

find the intersection 𝐻 of line segments 𝐷𝐺 and 𝐹𝐸. Construct the circle centered at 𝑃 passing 

through 𝐻. The intersection of this circle with 𝐴𝐵 are points 𝐼 and 𝐽. 
To construct 𝐶1, we construct the circle centered at 𝐷 passing through 𝐽 and construct the 

line perpendicular to 𝐴𝐵 passing through 𝐼. The intersection 𝐿 of the last circle and perpendicular 

line is the center of circle 𝐶1. Next, construct the line perpendicular to 𝑃𝑄 passing through 𝐿. The 

intersection 𝑀 of this perpendicular line with 𝑃𝑄 is the point of tangency of 𝐶1 with 𝑃𝑄. So, 𝐶1 is 

simply the circle centered at 𝐿 passing through 𝑀 (see Figure 3.2). 

 

 
Figure 3.2: Constructing circle 𝐶1 
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When 𝐶2 has been constructed, we can now check Theorem 3.1.a. For example, when 𝑎 = 4 

and 𝑏 = 3, 𝑡 =
12

7
≈ 1.71 (see Figure 3.3). The final GeoGebra file, Problem2.ggb, can be found in 

Section 6. 

 

 
Figure 3.3: Checking Theorem 3.1.a when 𝑎 = 4 and 𝑏 = 3 

 

Theorem 3.1.b is interesting for another reason. The construction involved is related to 

Soddy’s circles [17]. The traditional statement of the problem in Soddy’s circles is that given circle 

𝐴𝐵, three circles interior to circle 𝐴𝐵 can be constructed such that all four circles are mutually 

tangent to each other at a total of six points. In Theorem 3.1.b, however, the big circle 𝐴𝐵 and two 

of the three interior circles (circles 𝐴𝑃 and 𝑃𝐵) are already given. The task is to construct the third 

circle 𝐶. In the end, the four circles will be mutually tangent at six points. 

To construct circle 𝐶, we start at our three original circles: circles 𝐴𝐵, 𝐴𝑃, and 𝑃𝐵, with 

centers 𝐶, 𝐷, and 𝐸, respectively. If in the previous construction, the key was the circle centered at 

𝑃 passing through a point 𝐻, here, the key is the circle centered at 𝐻 passing through 𝑃. 

To construct this small circle centered at 𝐻, we begin by constructing the line segment 𝐹𝐷, 

where 𝐹𝐷 is perpendicular to 𝐴𝐵 at 𝐷. Then we construct 𝐺𝐸, where 𝐺𝐸 is perpendicular to 𝐴𝐵 at 

𝐸. Then we find the intersection 𝐻 of line segments 𝐷𝐺 and 𝐹𝐸. Now, construct the circle centered 

at 𝐻 passing through 𝑃. 

To construct the circle 𝐶, we find the intersection of circle 𝐴𝑃 with circle 𝐻𝑃, which is 𝐼; 
we also find the intersection of circle 𝑃𝐵 with circle 𝐻𝑃, which is 𝐽. The intersection of 𝐷𝐼 and 𝐸𝐽 
is 𝐿. Circle 𝐶 is the circle centered at 𝐿 passing through 𝐼 and 𝐽 (see Figure 3.4). 

 

 
Figure 3.4: Constructing circle 𝐶 
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We can now check Theorem 3.1.b. For example, when 𝑎 = 3.7 and 𝑏 = 2.2, 𝑝 =
𝑎𝑏(𝑎+𝑏)

𝑎2+𝑎𝑏+𝑏2
=

8.14×5.9

13.69+8.14+4.84
=

48

26.67
≈ 1.8 (see Figure 3.5). The final GeoGebra file, Problem3.ggb, 

can be found in Section 6. 

 

 
Figure 3.5: Checking Theorem 3.1.b when 𝑎 = 3.7 and 𝑏 = 2.2 

 

4. Concluding Remarks 
In this short note, we have seen solved construction problems using GeoGebra. While using 

GeoGebra for construction is a good idea, actually doing it is not as easy as it sounds. The students 

(and teachers!) need to figure out which GeoGebra functionalities to use given a set of construction 

instructions. That is a good exercise as each step in the construction can then be analyzed by the 

student. 

As a software, GeoGebra has a lot of functionalities. If we are being strict with construction 

using straight edge and compass, we need to ignore many of the functionalities of GeoGebra. 

Recently, a game called “Euclid the Game” [14] is becoming popular. The game actually limits the 

functionalities of GeoGebra, giving a good exercise in construction. Furthermore, this shows that 

learning construction using GeoGebra can also be fun. As the level of the player in the game 

progress, more GeoGebra functionalities are being allowed. A similar concept can also be done in 

classroom discussions for complex construction problems like the ones presented in this paper. 

Teachers can start with simple and basic construction techniques and when the class progress to the 

more complicated constructions, they can start using the other GeoGebra functionalities. 

The choice of the construction problem used in the classroom discussion is equally 

important. In this note, we made use of two problems both with great historical background. The 

historical background can be used as an interesting context at the start of the discussion. Teachers 

can pose questions such as why the ancient Japanese created the Sangaku problems or how the 

Archimedean shoemaker problem is a special case of the Problem of Apollonius. 

The complexity of the problem is also important as it allows teachers to start at easier 

construction problems and progress to more difficult and complicated ones, until the main problem 

is solved. In both examples above, students need to learn how to construct perpendicular lines, how 

to find the midpoint, how to construct an equilateral triangle, how to find the incenter and construct 

the incircle. For some students, each of these simple construction problems may be dull when 

discussed on its own. But when they are discussed in the context of a much more complex problem 

(such as the examples above), then learning these simple construction problems now has a purpose. 

Lastly, the two problems discussed in this paper are just part of a wider collection of 

problems. The Sangaku problems, while not all are construction problems, consists of many 

construction problems. A lecture, or series of lectures, can focus on the different Sangaku 

construction problems. On the other hand, since the Archimedean shoemaker problem is a special 
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case of the Problem of Apollonius, then a lecture can also focus on the complete solution of the 

Problem of Apollonius. 

Students in our college are usually unsurprised if the class will use some sort of software 

together with their math lessons. Upon using GeoGebra, we did encounter the usual problems 

students face while using technology in the classroom: the students’ unfamiliarity with the software, 

the learning curve that goes with it, and the usual network problems in a computer laboratory. 

About half of our students are first generation students and nearing middle age. Using any 

mathematical software (or any software for that matter) is not natural for them. The teachers will 

always provide more coaching to these students, and GeoGebra is not an exemption. But what 

differentiates it from other software is its ability to provide visualization of various mathematical 

concepts. In the case of the theorems discussed above, students can get convinced of the formulas 

even before the discussion of the formal and rigorous proof. 

During the first semester that GeoGebra was used, one of the authors conducted a simple 

student survey regarding learning experience using GeoGebra. On a sample of 150 students, all of 

them rated their experience as either “excellent,” “good,” or “satisfactory.” There was a general 

appreciation of how the software was able to provide visualization of various math lessons to the 

students. The usual classroom lecture was still conducted after the laboratory session and this 

served as a recap of what students learned from the GeoGebra activities. 

Looking forward, there are more questions that we need to address. Our college continues to 

accept the same student demographics, and so we continue to address the issue of first generation, 

middle aged learners. As to shifting to a more visual software, such as GeoGebra, we need to spend 

time in designing lessons that make use of such software. Finally, the faculty are having current 

discussions on how student assessments can be improved, and how GeoGebra can be incorporated 

in summative assessments. 
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